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1.  Background 
The primary objectives of TAbMEP are to provide an unbiased assessment of the measurement 
uncertainties and measurement consistency for historical airborne observations, and to establish 
systematic approaches for combining airborne data sets from multiple instruments/techniques 
and aircraft platforms.  The TAbMEP assessment is part of larger effort sponsored by NASA 
MEaSUREs program to make the airborne databases suitable for the assessment of global and 
region models.  In the case of ICARTT, four different aircraft conducted extensive 
intercomparisons during the summer 2004 field campaign [Fehsenfeld et al., 2006, Singh et al., 
2006].  This report is to recommend methods to combine these ICARTT data for any analysis 
based upon data collected on different aircraft, especially the analysis involving the comparisons 
and contrasts of the ICARTT data.  Measurement biases between platforms can potentially 
confound such comparisons and contrasts.  The current TAbMEP work is designed to put limits 
on the magnitude of possible biases and to provide objective uncertainty limits for the data 
collected from the instruments on all of the intercompared aircraft.  The present analysis is 
limited to a few selected species: O3, H2O, CO, NO, NO2, PAN, HNO3, SO2, few VOCs 
including CH2O, temperature, wind, j(NO2), j(O1D), particle number density, volume density, 
and sulfate.  The following chapters give the assessments of the measurements of each of these 
species. 
 
2.  Intercomparison Flights 
This assessment is based primarily upon five intercomparison flights conducted during the field 
campaign. Each of the intercomparison flights involved two aircraft flying wingtip-to-wingtip at 
two or three different altitudes for 40 minutes to more than an hour.  The flights were planned to 
encounter a range of conditions.  Table 1 summarizes the five flights, and Figures 1(a)-1(e) 
illustrate the flight tracks. 
 
Table 1. Summary of intercomparison flights 
 

Date – Time (UTC) Aircraft Location 
7/22/2004 - 14:45:50-15:32:14 DC-8/WP-3D W. Atlantic – E. of Massachusetts, US 
7/31/2004 - 22:52:50-23:32:10 DC-8/WP-3D Eastern Maine, US 
8/07/2004 - 21:35:10-22:19:10 DC-8/WP-3D Bay of Fundy 
7/28/2004 - 15:49:30-17:01:20 DC-8/BAe-146 Central N. Atlantic – W. of Azores 
8/03/2004 - 15:08:45-16:31:00 BAe-146/DLR Falcon French Atlantic coast 
 
3.  Analysis Techniques 
Several different analysis techniques have been utilized in this assessment of instrument 
precision and bias.  Summaries of these techniques are given in the following sections. 
 
3.1.  Precision Analysis 
Internal Estimate of Instrument Precision (IEIP) is an objective and data-driven approach to 
assess absolute and/or relative instrument precisions.   IEIP directly estimates, under a few 
assumptions, the instrument precision through the variance over a small time interval, Δt.  For 
species x, the total variance can be expressed as:  
 



 
 

 
 
 

 
 
 
 
 
 

 

 
 

  Figure 1(a), (b), (c).  Flight tracks for 
the NASA DC-8 (red) and NOAA WP-
3D (blue) intercomparison flights on (a) 
July 22, 2004, (b) July 31, 2004, (c) 
August 7, 2004. 
 
Figure 1(d). Flight tracks for the NASA 
DC-8 (red) and FAAM BAE-146 (blue) 
intercomparison flights on July 28, 2004. 
 
    Figure 1(e). Flight tracks for the DLR 
Falcon (red) and FAAM BAE-146 (blue) 
intercomparison flights on August 3, 
2004. 
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𝑉(𝑥) =  𝜎𝑥2 + 𝜎𝜀−𝑥2   (1) 
 
where 𝜎𝜀−𝑥2 is the random instrument variability (instrument precision) for measurement of 
species x and 𝜎𝑥2 represents the natural ambient variability.   
 
𝑉(𝑥) can be a reasonable estimate for 𝜎𝜀−𝑥2  if Δt is small enough such that 𝜎𝑥2 is negligible 
compared to 𝜎𝜀−𝑥2 .  At the same time, Δt must be large enough to minimize the effect of 
autocorrelation.   𝜎𝜀−𝑥2  can be assessed by following procedures listed below: 

1. Compute standard deviation over Δt and generate frequency distribution or histograms. 
2. Vary Δt and repeat the previous step, then look for the values of the modes, which are 

relatively constant over a limited range of Δt values. 
3. How long should Δt be? In principle, it should be long enough to overcome any 

significant autocorrelation impact and short enough such that 𝜎𝑥2 is negligible. 
• Δt  depends on temporal and spatial variability of the species or parameter of interest. 
• Δt  depends on instrument sampling rate. 
• Δt  determination requires expert judgment. 

 
IEIP analysis is typically applied over an entire flight and/or a large segment of data with fairly 
constant values.  Points below the limit of detection (LOD) may introduce bias in IEIP analysis.  
However, in the situation where the instrument LOD points are not flagged in the data, IEIP 
absolute precision may be used to estimate the limit of detection if a significant amount of data is 
in the low range near the LOD.  It should be noted that this approach may or may not be feasible 
for measurements with long integration times and/or significant gaps between the data points.  
IEIP analysis may also be problematic when measurement precision is strongly dependent on the 
ambient values. 
 
IEIP Example: O3 instrument precision assessment  

  
 
Figure 2.  Example of IEIP analysis of NASA DC-8 O3 observations during  
INTEX-A/ICARTT. 
 
Figure 2 shows an example of IEIP assessment for O3 for both relative and absolute 
uncertainties. Note that the modes of the distributions (i.e., the location of the peaks) are 
relatively constant over the range of Δt from 20-40 seconds. The standard deviation increases 
with longer Δt times, which is likely due to the O3 natural variability. The resulting relative 
uncertainty for this DC-8 flight is about 1.2% and absolute uncertainty is 0.6 ppbv. 
This procedure is an effective method to estimate so called “short-term” precision, which 
accounts for signal variation during a short period of assumed constant measurements.  Because 
this assumption is not always valid, the IEIP estimate tends to provide an upper limit of the 



instrument short-term precision.  Over longer time scales, however, some instruments are subject 
to lower precision (i.e. larger variability), which includes variability that arises from uncorrected 
changes in the zero level or sensitivity of the instrument.  These additional contributions to the 
variability are not likely reflected in the IEIP derived precision, but the intercomparison flights 
do provide a reasonable check on their influence.  This effect was examined through the 
comparisons of the "expected variability" and "observed variability" in the individual species 
assessments.  “Expected variability” is defined as the quadrature sum of the individual IEIP 
precisions for the paired instruments.  “Observed variability” is derived from relative residual 
plots, an example of which is shown in Figure 3.   

 
Figure 3.  Relative residual for NOAA WP-3D and NASA DC-8 O3 during the ICARTT 
campaign. 
 
Table 2. Example of IEIP analysis results 
 

Flight Platform 
 

IEIP 
Precision 

Expected 
Variability 

Observed 
Variability 

Adjusted  
Precision 

07/22 O3 DC-8  1.2% 1.8% 2.7% 1.8% 
O3WP-3D 1.4% 2.1% 

07/31 CO DC-8 DACOM 0.8% 1.7% 1.6% 0.8% 
CO WP-3D VUVF 1.5% 1.5% 

 
The “observed variability” (in percentage) equals 100 × standard deviation (or 2.7% on 7/22 in 
this example).  Each standard deviation (or “observed variability” value) should equal the 
“expected variability”.  When the “observed variability” is larger than the “expected variability”, 
the IEIP derived (short-term) precision needs to be adjusted to reflect the longer term 
fluctuations (see 07/22 O3 example in Table 2).  This “adjusted precision” is obtained by 
proportionally scaling the IEIP estimates so that the “expected variability” value equals the 
“observed variability.”  When the "observed variability" is smaller than the “expected 
variability”, the "adjusted precision" is set equal to the "IEIP precision" (see 07/31 CO example 
in Table 2).  Ambient variability should not pose a problem, since it should have been sampled 
by both instruments during the intercomparison period.   A key assumption made here for 
the precision adjustment is that the long-term precision is proportionally scaled with the short-
term precision.  This assumption may not reflect the actual instrument performance and may lead 



to either an underestimate or an overestimate of the long-term precision for each of the given 
instruments.  The final adjusted precision estimates are required to be reviewed by TAbMEP 
measurement experts. 
 
3.2.  Linear Regression Techniques  
The results of instrument intercomparisons are often reported as the linear regression of the 
measurements of one instrument as a function of the measurements of another, e.g. [Hoell et al., 
1985].  Orthogonal distance regression (ODR) is a regression technique similar to ordinary least 
squares (OLS) fit with the stipulation that both x and y are independent variables with errors.   
ODR minimizes sum of the squares of the orthogonal distances rather than the vertical distances 
(as in OLS).  ODR is generally equivalent to 
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subject to 𝒚𝒊 + 𝜺𝒊 = 𝒇(𝒙𝒊 + 𝜹𝒊; 𝜷) where 𝜺𝒊is the error in 𝒚, 𝜹𝒊 the error in 𝒙, 𝒘𝜺𝒊and 𝒘𝜹𝒊 
weighting factors, and 𝜷 a vector of parameters to be determined (i.e. slope and intercept in this 
case), [Zwolak et al., 2007].   Note that a weighted ODR (𝒘𝜺𝒊 and 𝒘𝜹𝒊 ≠ 𝟏) is necessary when 
observations 𝒙𝒊 and 𝒚𝒊 are heteroscedastic (variance changes with 𝒊, or observations have point 
by point uncertainties), [Boggs et al., 1988].   
 
It has been shown that ODR performs at least as well and in many cases significantly better than 
OLS, especially when 𝒅 = 𝝈𝜺 𝝈𝜹⁄ ≤ 𝟐, [Boggs et al., 1988].  Boggs et al. have shown that ODR 
results in smaller bias, variance, and mean square error (mse) than OLS, except possibly when 
significant outliers are present in the data, [Boggs et al., 1988].  For the bias of the parameter, 
(𝜷), and function estimates, 𝒇(𝒙𝒊; 𝜷), OLS is statistically better only 2% of the time while ODR 
is significantly better 50% of the time.  Results for the variance and mse of the parameter and 
function estimates were similar; ODR variance and mse were smaller than that from OLS about 
25% of the time.  OLS results were significantly better than ODR only 2% of the time, [Boggs et 
al., 1988].   
 
For our application, the data from the instruments being compared is merged to the same time 
base then plotted and fit using ODR.  No LOD points should be included in regression.  Points 
that have significantly large ambient variability need be examined to determine if they should be 
included in the regression analysis.  Normally the observations are not heteroscedastic.   In 
addition, an accurate estimate of measurement uncertainty is not often available on point by 
point basis.  Therefore, in the interest of treating all the intercomparisons uniformly, we use 
𝒘𝜺𝒊and 𝒘𝜹𝒊 = 𝟏.  The coefficient of determination, 𝑹𝟐, is used to evaluate the robustness of the 
regression.  Under some circumstances, we do not use ODR analysis.  This occurs when the 
range of the data is small or there are very few data pairs (typically for some VOCs).  The 
general rule to assess the range is when variability of the data set is less than 5 times the 
uncertainty, ODR is not used.  In that case we present the data but do not subject it to additional 
analysis.  
 
It is not uncommon that a few points are far apart from the bulk of the data points.  In this case, a 
test should be performed to determine if any point exists that could be considered as an 
influential point.  For TAbMEP analysis purposes an influential point is defined as a point that 
causes the slope or intercept of a regression line to statistically significantly differ with removal 



of the point.  This check is to ensure robustness of regression, i.e., no one point has significantly 
large weight in the determination of the regression line.  If large scatter exists it may be 
necessary to check the goodness of fit of the linear regression model.  A F test should be 
considered to validate the linear hypothesis.  
 
3.3.  Bias Calculations 
The Reference Standard for Comparison (RSC) is introduced to quantitatively evaluate the bias 
for each individual measurement.  Conceptually, RSC can be derived through a weighted 
average of measurements from instruments on spatially and temporally co-located aircraft 
platforms. This can mathematically be expressed as 
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where RSC is a function of a given time t and location 𝐿�⃑ , intercomparison data from the 𝑖𝑡ℎ 
instrument is given by 𝑚𝑖, there are 𝑛 total number of instruments involved in a the field study, 
and the normalized weighting factor assigned to the 𝑖𝑡ℎ data set is 𝑤𝑖 (i.e., ∑ 𝑤𝑖

𝑛
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values of the 𝑤𝑖 are determined by consensus of the TAbMEP measurement experts.  It should be 
noted that the RSC is only used for measurement comparison purposes. 
 
In practice, the RSC is difficult to find since each intercomparison was conducted between only 
two aircraft at a time.  However, the field campaign measurement comparison strategy was 
designed to guarantee that each instrument could be related to any other instrument through 
paired intercomparisons.  The approach prescribed below is an effective way to arrive at a 
reasonable approximation to the RSC. 

 
Data from 𝑛 instrument intercomparison flights will first be analyzed via pairwise orthogonal 
distance regressions (ODR) over intercomparison periods when pairs of planes were flown in 
wingtip-to-wingtip formations. The regressions will yield best-fit curves 

 
𝑚𝑖 = 𝑎𝑖,𝑗 +   𝑏𝑖,𝑗𝑚𝑗 (1) 

 
where 𝑚𝑖 and 𝑚𝑗 are data from instruments 𝑖 and 𝑗, respectively. Once data from each 
instrument is related via best-fit line to at least one other instrument, the system of best-fit 
equations can be manipulated to express the data sets {𝑚𝑖:  1 ≤ 𝑖 ≤ 𝑛} as linear functions of a 
single chosen data set 𝑚1.  The slopes and intercepts may be directly obtained from the 
regression or indirectly through algebraic manipulation of regression results.  We note that the 
choice of instrument to serve as the independent variable 𝑚1 will not affect the final RSC.  Thus, 
𝑚1 should be chosen for convenience to correspond to the instrument with the highest number of 
direct intercomparisons against other instruments.  

 
The RSC can easily be written as a linear function of the chosen independent variable, 𝑚1 : 

 
𝑅𝑆𝐶 =  𝐴1 + 𝐵1𝑚1 (2) 

 
where 𝐴1 =  ∑ 𝑤𝑖𝑎𝑖,1𝑛

𝑖=1 ,  𝐵1 =  ∑ 𝑤𝑖𝑏𝑖,1𝑛
𝑖=1 , 𝑎1,1 =  0,  and 𝑏1,1 = 1. 

 



Using the original set of regression equations the RSC can be expressed as a function of the data 
from any instrument (mi).  Thus, the Best Estimate Bias for the ith instrument can then be 
expressed in terms of 𝑚𝑖, i.e.,: 
 

𝐵𝑒𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝐵𝑖𝑎𝑠𝑖 = 𝑚𝑖 −  𝑅𝑆𝐶 
 

It is acknowledged that this approach provides a reasonable estimate of the average bias from the 
available intercomparison data, however, the accuracy of this estimate is limited, to a large 
extent, by the robustness of the regressions between the intercomparison data sets.    
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